Mobile radio access network monitoring using the self-organizing map

نویسندگان

  • Pasi Lehtimäki
  • Kimmo Raivio
  • Olli Simula
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Mobile Radio Access Network Using the Selforganizing Map

Abstract: Mobile networks produce a huge amount of spatio-temporal data. The data consists of parameters of base stations and quality information of calls. The Self-Organizing Map (SOM) is an efficient tool for visualization and clustering of multidimensional data. It transforms the input vectors on two-dimensional grid of prototype vectors and orders them. The ordered prototype vectors are eas...

متن کامل

Neural Analysis of Mobile Radio Access Network

The Self-Organizing Map (SOM) is an efficient tool for visualization and clustering of multidimensional data. It transforms the input vectors on two-dimensional grid of prototype vectors and orders them. The ordered prototype vectors are easier to visualize and explore than the original data. Mobile networks produce a huge amount of spatiotemporal data. The data consists of parameters of base s...

متن کامل

Access and Mobility Policy Control at the Network Edge

The fifth generation (5G) system architecture is defined as service-based and the core network functions are described as sets of services accessible through application programming interfaces (API). One of the components of 5G is Multi-access Edge Computing (MEC) which provides the open access to radio network functions through API. Using the mobile edge API third party analytics applications ...

متن کامل

A Modfied Self-organizing Map Neural Network to Recognize Multi-font Printed Persian Numerals (RESEARCH NOTE)

This paper proposes a new method to distinguish the printed digits, regardless of font and size, using neural networks.Unlike our proposed method, existing neural network based techniques are only able to recognize the trained fonts. These methods need a large database containing digits in various fonts. New fonts are often introduced to the public, which may not be truly recognized by the Opti...

متن کامل

Landforms identification using neural network-self organizing map and SRTM data

During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002